Source code for dffml.model.slr

import pathlib
import statistics
from typing import AsyncIterator, Tuple, Any, Type, List

from ..base import config, field
from ..util.entrypoint import entrypoint
from .model import SimpleModel, ModelNotTrained
from ..feature.feature import Feature, Features
from ..source.source import Sources, SourcesContext
from ..record import Record


def matrix_subtract(one, two):
    return [
        one_element - two_element for one_element, two_element in zip(one, two)
    ]


def matrix_multiply(one, two):
    return [
        one_element * two_element for one_element, two_element in zip(one, two)
    ]


def squared_error(y, line):
    return sum(map(lambda element: element ** 2, matrix_subtract(y, line)))


def coeff_of_deter(y, regression_line):
    y_mean_line = [statistics.mean(y)] * len(y)
    squared_error_mean = squared_error(y, y_mean_line)
    squared_error_regression = squared_error(y, regression_line)
    return 1 - (squared_error_regression / squared_error_mean)


def best_fit_line(x, y):
    mean_x = statistics.mean(x)
    mean_y = statistics.mean(y)
    m = (mean_x * mean_y - statistics.mean(matrix_multiply(x, y))) / (
        (mean_x ** 2) - statistics.mean(matrix_multiply(x, x))
    )
    b = mean_y - (m * mean_x)
    regression_line = [m * x_element + b for x_element in x]
    accuracy = coeff_of_deter(y, regression_line)
    return (m, b, accuracy)


[docs]@config class SLRModelConfig: predict: Feature = field("Label or the value to be predicted") features: Features = field("Features to train on. For SLR only 1 allowed") location: pathlib.Path = field("Location where state should be saved")
[docs]@entrypoint("slr") class SLRModel(SimpleModel): r""" Logistic Regression training one variable to predict another. The dataset used for training **dataset.csv** .. code-block:: :test: :filepath: dataset.csv f1,ans 0.1,0 0.7,1 0.6,1 0.2,0 0.8,1 Train the model .. code-block:: console :test: $ dffml train \ -model slr \ -model-features f1:float:1 \ -model-predict ans:int:1 \ -model-location tempdir \ -sources f=csv \ -source-filename dataset.csv Assess the accuracy .. code-block:: console :test: $ dffml accuracy \ -model slr \ -model-features f1:float:1 \ -model-predict ans:int:1 \ -model-location tempdir \ -features ans:int:1 \ -sources f=csv \ -source-filename dataset.csv \ -scorer mse \ 1.0 Make a prediction **predict.csv** .. code-block:: :test: :filepath: predict.csv f1 0.8 .. code-block:: console :test: $ dffml predict all \ -model slr \ -model-features f1:float:1 \ -model-predict ans:int:1 \ -model-location tempdir \ -sources f=csv \ -source-filename predict.csv [ { "extra": {}, "features": { "f1": 0.8 }, "key": "0", "last_updated": "2020-11-15T16:22:25Z", "prediction": { "ans": { "confidence": 0.9355670103092784, "value": 1 } } } ] Example usage of Logistic Regression using Python **slr.py** .. literalinclude:: /../examples/model/slr/slr.py :test: .. code-block:: console :test: $ python slr.py Accuracy: 0.9355670103092784 {'f1': 0.8, 'ans': 1} """ # The configuration class needs to be set as the CONFIG property CONFIG: Type[SLRModelConfig] = SLRModelConfig # Simple Linear Regression only supports training on a single feature. # Do not define NUM_SUPPORTED_FEATURES if you support arbitrary numbers of # features. NUM_SUPPORTED_FEATURES: int = 1 # We only support single dimensional values, non-matrix / array # Do not define SUPPORTED_LENGTHS if you support arbitrary dimensions SUPPORTED_LENGTHS: List[int] = [1] async def train(self, sources: Sources) -> None: # X and Y data x = [] y = [] # Go through all records that have the feature we're training on and the # feature we want to predict. Since our model only supports 1 feature, # the self.features list will only have one element at index 0. async for record in sources.with_features( self.features + [self.config.predict.name] ): x.append(record.feature(self.features[0])) y.append(record.feature(self.config.predict.name)) # Use self.logger to report how many records are being used for training self.logger.debug("Number of input records: %d", len(x)) # Save m, b, and accuracy self.storage["regression_line"] = best_fit_line(x, y) self.is_trained = True async def predict( self, sources: SourcesContext ) -> AsyncIterator[Tuple[Record, Any, float]]: # Load saved regression line regression_line = self.storage.get("regression_line", None) # Ensure the model has been trained before we try to make a prediction if not self.is_trained: raise ModelNotTrained("Train model before prediction.") # Expand the regression_line into named variables m, b, accuracy = regression_line # Iterate through each record that needs a prediction async for record in sources.with_features( self.parent.config.features.names() ): # Grab the x data from the record x = record.feature(self.features[0]) # Calculate y y = m * x + b # Set the calculated value with the estimated accuracy record.predicted( self.config.predict.name, self.config.predict.dtype(y), accuracy, ) # Yield the record to the caller yield record