Tuner Tuner
- class dffml.tuner.tuner.Tuner(config: Optional[Type[dffml.base.BaseConfig]])[source]
Abstract base class which should be derived from and implemented using various tuners.
- CONFIG
alias of
dffml.tuner.tuner.TunerConfig
- CONTEXT
alias of
dffml.tuner.tuner.TunerContext
- class dffml.tuner.tuner.TunerConfig[source]
- no_enforce_immutable()
By default, all properties of a config object are immutable. If you would like to mutate immutable properties, you must explicitly call this method using it as a context manager.
Examples
>>> from dffml import config >>> >>> @config ... class MyConfig: ... C: int >>> >>> config = MyConfig(C=2) >>> with config.no_enforce_immutable(): ... config.C = 1
- class dffml.tuner.tuner.TunerContext(parent: dffml.tuner.tuner.Tuner)[source]
- abstract async optimize(model: dffml.model.model.ModelContext, feature: dffml.feature.feature.Feature, accuracy_scorer: dffml.accuracy.accuracy.AccuracyContext, train_data: dffml.source.source.SourcesContext, test_data: dffml.source.source.SourcesContext) float [source]
Abstract method to optimize hyperparameters
- Parameters
model (ModelContext) – The Model which needs to be used.
feature (Feature) – The Target feature in the data.
accuracy_scorer (AccuracyContext) – The accuracy scorer that needs to be used.
train_data (SourcesContext) – The train_data to train models on, with the hyperparameters provided.
sources (SourcesContext) – The test_data to score against and optimize hyperparameters.
- Returns
The highest score value(optimized score)
- Return type