DFFML
82843d30b

Introduction

  • About
  • Installation
  • Concepts

Usage

  • Quickstart
  • Tutorials
  • Examples
    • Notebooks
      • Moving Between Models
      • Evaluating Model Performance
      • Tuning Models
      • Saving and loading models
      • Ensemble by stacking
      • Transfer Learning
      • Working with Multi-Output models
    • Automating Classification
    • Meta Static Analysis
    • DataFlow HTTP Deployment
    • InnerSource
    • MNIST Handwriten Digits
    • Flower17 Species Classification
    • COVID Forecasting
    • Continuous Deployment of DataFlows
    • Ice Cream Sales
    • Data Cleanup

Reference

  • Plugins
  • Command Line
  • HTTP API
  • Base
  • Noasync
  • Log
  • Version
  • Record
  • Plugins
  • Cli
  • Tuner
  • Operation
  • Util
  • Configloader
  • Db
  • Service
  • Df
  • Model
  • High_Level
  • Source
  • Port
  • Accuracy
  • Feature
  • Secret
  • Troubleshooting
  • Architecture

Subprojects

  • shouldi

Community

  • GitHub
  • Master Branch Docs
  • Publications
  • Contact Us
  • Contributing
  • News
  • Changelog
DFFML
  • »
  • Examples »
  • Notebooks
  • Edit on GitHub

Notebooks

Video on Setting up DFFML for Machine Learning Tasks

http://img.youtube.com/vi/y6bz-9U4hJg/0.jpg
  • Moving Between Models
    • Import Packages
    • Build our Dataset
    • Instantiate our Models with parameters
    • Train our Models
    • Test our Models
    • Predict using our Models
  • Evaluating Model Performance
    • Import Packages
    • Build our Dataset
    • Instantiate our Models with parameters
    • Train our Models
    • Test our Models
  • Tuning Models
    • Import Packages
    • Build our Dataset
    • Instantiate our Models with parameters
    • Train our Models
    • Test our Models
    • Tuning Models
  • Saving and loading models
    • Import Packages
    • Build our Dataset
    • Instantiate our Models with parameters
    • Train our Models
    • Test our Models
    • Restart kernel and load the model
    • Import Packages
    • Build our Dataset
    • Load our saved model
  • Ensemble by stacking
    • Import Packages
    • Build our Dataset
    • Split our data
      • Let the Ensemble begin!
      • 1. Training First-Level Base Models on train data.
  • Transfer Learning
    • Setting-up
    • Feature Extraction:
      • Define our Additional layers
      • Instantiate our Model with parameters
      • Train the Model
      • Test the Model
      • Make predictions using our Model.
  • Working with Multi-Output models
    • Multi-Output Regression
      • Build our Dataset
      • Instantiate our Model with parameters
      • Train our Model
      • Test our Models
      • Make predictions using our Model.
    • Multi-Output Classifier
      • Build our Dataset
      • Instantiate our Model with parameters
      • Train our Model
      • Test our Models
      • Make predictions using our Model.
Previous Next

© Copyright 2017 - 2022, Intel.

Built with Sphinx using a theme provided by Read the Docs.